Capacitors, like other electrical elements, can be connected to other elements either in series or in parallel. Sometimes it is useful to connect several capacitors in parallel in order to make a functional block such as the one in the figure. In such cases, it is important to know the equivalent capacitance of the parallel connection block. This article will focus on analyzing the parallel connection of capacitors and possible applications for such circuits. Analysis All capacitors in the parallel connection have the same voltage across them, meaning that: where V1 to Vn represent the voltage across each respective capacitor. This voltage is equal to the voltage applied to the parallel connection of capacitors through the input wires. However, the amount of charge stored at each capacitor is not the same, and depends on the capacitance of each capacitor according to the formula: where Qn is the amount of charge stored on a capacitor, Cn is the capacitance of the capacitor and Vn is the voltage applied to the capacitor, which is equal to the voltage applied to the complete parallel connection block. The total amount of charge that is stored by the block of capacitors is represented by Q and is divided between all the capacitors present in this circuit. This is represented by: The following equation is used to determine the equivalent capacitance for the parallel connection of multiple capacitors: where Ceq is the equivalent capacitance of the parallel connection of capacitors, V is the voltage applied to the capacitors through the input wires, and Q1 to Qn represent the charges stored at each respective capacitor. This brings us to the important conclusion that: which means that the equivalent capacitance of the parallel connection of capacitors is equal to the sum of...
[Read more]
Tag: